A Review of Laser Applications in Orthodontics

Dr. Varsha Joseph¹, Dr. Bejoy PU², Dr. Lakshmi Lakshmanan³, Dr. Minu C mathews⁴

¹Post Graduate Student, Department of Orthodontics & Dentofacial Orthopedics, Malabar Dental College, Malappuram, Kerala, India
²Professor & Head, Department of Orthodontics & Dentofacial Orthopedics, Malabar Dental College, Malappuram, Kerala, India
³Professor, Department Of Orthodontics & Dentofacial Orthopedics, Malabar Dental College, Malappuram, Kerala, India
⁴Post Graduate Student, Department of Orthodontics & Dentofacial Orthopedics, Malabar Dental College, Malappuram, Kerala, India

*Corresponding author: Dr. Varsha Joseph | Received: 15.05.2021 | Accepted: 20.06.2021 | Published: 07.07.2021

Abstract: Lasers have been widely used in most fields of dentistry for many years, and they have recently gained popularity in orthodontics. Its use has allowed orthodontists to overcome some of the difficulties associated with traditional orthodontic treatment procedures. These include direct chair side clinical orthodontic procedures, adjunctive orthodontic and laboratory procedures. This review article is about the applications of lasers in field of orthodontics.

Keywords: Laser; Laser Etching; Laser Debonding; Laser curing Accelerated Orthodontics, Soft tissue laser.

INTRODUCTION

Laser is an acronym, which stands for Light Amplification by Stimulated Emission of Radiation. A laser is a single wavelength of light traveling through a collimated tube delivering a concentrated source of energy. Laser was developed by Theodore H. Mmaiman in 1960 [1]. The laser technique is now widely used in orthodontic treatment and has proven to have numerous advantages.

APPLICATION OF LASER IN ORTHODONTICS

There are two types of lasers.
1. Hard tissue laser
2. Soft tissue laser

Both types of laser are used in orthodontics in different procedures.

LASER ETCHING

The application of laser energy to an enamel surface causes localized ablation and removal of enamel surface [1, 2]. Etching is caused primarily by the micro-explosion of entrapped water in the enamel, as well as some melting of the hydroxyapatite crystals. Laser etching with a neodymium-yttrium-aluminum garnet (Nd:YAG) laser produces lower bond strengths than acid etching [3, 4]. According to Torun et al. [5], a meta analysis on laser etching for orthodontic bonding, comparing the effectiveness of Er,Cr:YSGG with 37% orthophosphoric acid, concludes that the use of Er,Cr:YSGG produces similar results when compared to the use of conventional orthophosphoric acid.

LASER DEBONDING

Laser debonding is commonly performed with CO2 and ND: YAG lasers. Ceramic brackets can easily be debonded with this technique [6]. Debonding force can be reduced by thermal softening of adhesive resin. The mechanism of laser debonding includes: thermal softening, thermal ablation and photoablation [7].

LASER CURING

Argon lasers can be used to bond orthodontic brackets, providing bond strengths comparable to traditional light curing [8]. It also significantly reduces chair time while potentially conferring demineralization resistance on the enamel. However, when debonding, it left more adhesive on the tooth surfaces [9].

ACCELERATED TOOTH MOVEMENTS

Low-level laser therapy stimulates the proliferation of osteoclasts, osteoblasts, and fibroblasts, affecting bone remodelling and accelerating tooth movement. The mechanisms involved in the acceleration of tooth movement are ATP production and cytochrome C activation [10], and improve the velocity of tooth movement via RANK/RANKL and the macrophage colony-stimulating factor and its receptor expression. However, some studies found insignificant differences [11] or even decreased tooth movement [12]. According to some authors, if a laser dose is too low, it will not have a biostimulating effect, whereas a higher dose can inhibit tooth movement.

Copyright © 2021 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

BRACKET MESH DESIGNING

David Hamula introduced titanium brackets with retentive base pads created by a computer-aided laser (CAL) cutting process that generates micro- and macro-undecuts [13]. A sufficiently powerful Nd: YAG laser is used to melt and evaporate the metal and burn hole-shaped retentions on the smooth surface of an injection moulded single piece bracket base.

LASER WELDING

In orthodontics, welding is a common procedure. Joining two metal surfaces by laser is an efficient procedure. The rapid and repeatable actions of the pulsed neodymium LASER microwelder can be used a safe intraoral welding unit with no damage to the hard tissues. This has an advantage that it minimizes the time consuming procedures. Thus intraoral welders can be used for construction and placement of retention devices, intraoral welding of space maintainers, periodontal splints, ortho-surgical splints, and attachment of archwire, brackets to existing bands and auxiliaries [14].

3D LASER SCANNING

Laser scanning is a non-invasive technique for 3D analysis of facial morphology, evaluating facial symmetry, assessment of treatment outcomes, evaluating clinical outcomes for surgical cases evaluating patients with CLP, soft tissue changes and scanning dental casts. The laser scanner can detect not only an object’s length and width but also its depth [15].

SOFT TISSUE LASER

Soft-tissue lasers have numerous applications in orthodontics, including gingivectomy, frenectomy, opercutectomy, papilla flattening, uncovering temporary anchorage devices, ablation of aphthous ulcerations and exposure of impacted teeth. Diode and erbium soft-tissue lasers offer many advantages in regard to esthetic finishing, practice efficiencies, and interdisciplinary treatment options [16].

PAIN CONTROL

Low-level laser therapy has been shown to have analgesic effect in a variety of therapeutic procedures. The analgesic effect is believed to be attributed to its anti-inflammatory effect and direct inhibition of neural activity [17]. Kim et al. Indicated the beneficial effects of laser therapy in controlling pain perceived by the patients during canine retraction or after separation [18]. The laser parameters such as wavelength, power, energy, and irradiation time, frequency of irradiation, power density and energy density could affect the analgesic effect.

CONCLUSION

Since the introduction of lasers into the dental profession, they have been recognised as a highly effective treatment modality for both hard and soft tissue procedures. Laser treatment will be a routine procedure in orthodontics in the modern era, with the availability of more advanced laser devices at a lower cost.

REFERENCES

